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Synopsis

Equations describing transient diffusion through multilaminate slabs with constant diffusion
and partition coefficients for each lamina separating well-stirred finite and semiinfinite baths are
presented. Application is illustrated using a representative slab with three laminae.

INTRODUCTION

Equations have been reported describing transient diffusion through homo-
geneous slabs!? and through binary laminate slabs® separating well-stirred finite
and semiinfinite baths. This paper extends that work to provide equations
describing such systems with the baths separated by slabs containing N laminae,
each with constant diffusion and partition coefficients. The equations are for-
mulated in a manner suitable for computer evaluation using determinants and
summations and are applicable in the range of modest to large time.* The
procedure is illustrated by application to a system with N = 3.

DIFFUSION EQUATIONS

Consider a laminate slab of unit cross section and N laminae in contact with
a well-stirred semiinfinite bath at x = x¢ and with a well-stirred finite bath of
volume V at x = xn. The system is presented schematically and indexed in
Figure 1. The diffusant concentration in the semiinfinite bath is constant, c¢,
and its initial value in the finite bath is ¢®. The concentration in each lamina
prior to initiation of the diffusion is uniform, C} in lamina j, related to a bath
concentration, ¢, at equilibrium by the partition coefficient K; = C:/ci. Equi-
librium is maintained at each phase interface described by K1 = C{/c¢ atx =
x0, Kji—1;=Cj-1/C;atx = xj_1forj=2,...,N,and Ky = Cn/c,at X = xn,
where ¢ isin V. Each lamina is also characterized by a constant diffusion coef-
ficient D; and a thickness X; = x; — xj—1,j = 1, ..., N. The total thickness of the
slabis L = 2, X;.

The differential equations and boundary conditions for the determination
of Cj(x,t) =C; are

92C; 1 oC; )
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Cl(x()?t) = Ci? t= 0; CN(xN’O) = C?V (3)
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K,-_u=51'—‘—1=9—‘—1, x=xj_y, t=0, j=2,.,N (5)
Cj(x,0) = C, Xj-1Sx <xj (6)
C{ _ Cn
K== x=x, t20, Ky=77, x=xn >0 (7
oC;—, oC; .
Dj—l—O.xL::Dj?;’ x=xj-1, t=20, j=2,.,N (8)

Hpy is the ratio of the amount of diffusant in lamina N to that in volume V at
equilibrium and is given by

= KNVNIV €))

where V) is the volume of lamina N.
Application of the Laplace transform method® using the inversion theorem
gives solutions

Ci(x,t) = C5+2 ¥ e"DNakt {[(C5 — CDALYY ™\ + iann Xn
n=1
(C{ = CWAHTY 55 1 0 (x) + [(C§ = CDARY + ian. XN

(CY ~ CRANITY ), n(x)}/ [aN (bIAIJ)n], j=1.,N (10

where Cf is the concentration of diffusant in lamina j in equilibrium with a bath
of concentration ¢¢ and |A| is the determinant of the elements Ay, of order 2N
generated by applying j in sequence 1, ..., N with [ defined as indicated and k
=1,..., N, as follows:

Jj=1, [=2j—1: A1 =1 sin a1xo, Ao = COs a1xg

j = 2, ...,N, l= 2j - 2: Al,l—l = —7 sin oj-1X;—1, Al,l = —COS Oj—1Xj—1
A1 = iK1 sin ajxj—y, Ao =K1 jcos ajxj—g

j=2,..,N, I=2j—-1: Apj—9=0j_1jCOS 0j~1Xj_1,

Aj—1=10j—1jsinaj_1x—1, Ay = —cos ojxj—1,
A1 = —isin ajx; 1
j=N, [ =2N: AonoN-1= Hpy cos anxy — anXn sin anx,

Agnan = I(Hy sin ayxny + an Xy cos ayxy)  (11)

and all other Ay, = 0, with §;—1; = (Dj—1/D;)/2. The A'* are the cofactors of
the A, and Y 9j—1,,(x) =i sin @j,x and Y; 9; ,(x) = cos ajpx forj = 1,..., N.
The ay are the nonzero positive roots of

|A] =0, (12)

indexed as ap;,, where aj, = ann/0j N.

Semiintinite ' Finite
bath [ N bath V

%o X Xio % AN- XN
Fig. 1. Schematic representation of laminate slabs separating finite and semiinfinite baths.
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Fig. 2. Relative concentration profile, C(x,7)/C} vs. x/X3, for systems with Hz = 2.0, 893 = 1.0,
and K13 = K23 = K3 =1.0: I, 613 = 0.2; H, 613 = 1.0; and IH, 613 =5.0. 7: (—) 1.5; (- --) 6.0.

In many experiments the concentration or pressure of the diffusant in the finite

volume c(t) is measured as a function of time. Using eq. (10) and setting Cn(xn,t)
= Knc(t), one obtains

c(t)=cc+ 2 i e Dyaknt {[(ct — cHKinak®™ M+ ian Xn
n=1
(c0 = cHANINN YN on 10 (xn) + [(c€ — K INALYN + ian, XN

(€0 = ) ANV Yy oy (xN)}/ QNn (Z_L%)n} (13

where KlN = K1/KN.

Adoption of eq. (13) to describe feasible experimental conditions is readily
obtained by fixing the values of ¢¢, ¢¢, and ¢? appropriately. In addition, vari-
ations on the boundary conditions leading to different diffusion equations can
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Fig. 3. In F(7) vs. 7 for systems with H = 2.0,023 = 1.0and K13 = K93 = K3=1.0: at(a) d;3 = 0.2,
(b) 613 = 1.0, and (C) 613 = 5.0.
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be introduced. For example, assume lamina 1 is a film formed in the semiinfinite
bath in which the slab with j = 2, ..., N is placed to initiate the transport com-
mencing at x = x;. The differential equations and boundary conditions are
provided in egs. (1)—(8), with eq. (6) replaced by

Ci(x,00=C5, xosx<x
Cj(x,0) = C: xj-1<x<x, Jj=2,.,N

The solutions are

(14)

Ci(x,t) =C5+2 Y e DNaj,t
n=1

X {[(C§ = CHAZY ™ + ian, Xn(CY — CRIAZNUTY gi 1 nlx)

AN | |»
OlN n
Jj=1.,N (15)

where | A| is again defined and evaluated by eq. (11). The concentration in V
is given by

+ [(CS = CDAZY + iana Xn(CY — CRYAN Y, 9 0 (1)} /

c(t) =cc+2 Z e~ Dnvak,t {[(c¢ — cOKINAFY 1+ iann XN
(cO = AN Yp on_1n(xn) + [(c€ = cOKNARY + iana XN

(cO— cl)AZN 2N] YN 2Nn(xN)}/ [aN" (a I(le)n] (16)
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Fig. 4. Relative concentration profile, C(x,7)/C% vs. x/X3, at 7 = 6.0 for systems with 613 = 823
= 1.0,K13 = K23 = 0.2, and K3 =5.0. Hg: (—'—) 0.2; (—) 1.0; (---) 2.0.
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Fig. 5. In F(7) vs. 7 for systems with 6,3 = 1.0, K13 = K93 = 0.2,and K3 = 5.0: at(a) Hs = 0.2, (b)
H3 = 1.0, and (C) H3 =2.0.

APPLICATION

Equations (10) and (13) were reduced to describe systems with N = 3, ¢! = ¢©
> 0, and c¢ = 0, and recast in reduced dimensionless parameters: Dsa.t = R2r,
where «3,X3 =R, and 7 = D3t/X} R13n = RN 13/813; Rosn = RnX2s/8a3; 013
= D1/D3; 633 = Da/D3; A1z = X1/X3; Aoz = X2/X3; and K13 = C,/C3and K3 =
C,/C3 at equilibrium.

The equations for each lamina and the concentration in V are

Cilx,7) _ 5 & _R2. .(R13n(x1—x)
ct 2nz=‘,1e {sm X,

+ 815K 13 cos (Mﬂ) sin R23,n] (Hssin R, + R, cos Ry)

X,
N [52 Koy sin (Rla,,(xl - x) @%—_x)) cos Rm]
1

) COS R23,n

sin R23’n - 513K13 CcOs
X1

X (Hs cos Ry, — R,, sin R, )}/R (OIA') a7

M = —2019K 1o i e—R%7 sin (mxz_—}_)) (HzsinR, + R, cos R,,)
Ch n=1 X2
— 893K 23 COS (521’%——”) (Hj cos R, — R, sin R,,) / Rn (%) (18)
2 n
R, -
03(5117') = 2513K132 e Rnr H30 ('_(3;?3 x))
_ . Rn(xg—x)) (O|A|)
R,, sin (————X3 /Rn R 1. (19)
and
e—R%7
F) =20 = otk £ e (20)
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Procedures for evaluating these types of equations have been described pre-
viously.® Relative concentrations were calculated as a function of 7. Selected
results obtained using three roots, R, with n = 1, 2, 3, for systems with A3 = Ag3
= 1.0, are shown in Figures 2-5. Figures 2 and 3 illustrate the effect of changing
D1/D3 = 6%; on the time dependence of the relative concentration profile in the
laminate and the relative concentration in V. Figures 4 and 5 illustrate the effect
of Hs, the ratio of the equilibrium amounts of penetrant in lamina 3 and in V,
on a relative concentration profile in the laminate and the time dependence of
the relative concentration of the penetrantin V.
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NOMENCLATURE

determinant of order 2N used to evaluate an,, and the coefficients of the terms in the
equation for C(x,t).

elements of the determinant | A|

cofactors of the elements A;, in |A|

diffusant concentration in the finite bath as a function of time.

diffusant concentration in the semiinfinite bath; a constant

initial diffusant concentration in the finite bath

diffusant concentration in a bath in equilibrium with the diffusant in the laminae before
the diffusion experiment is initiated

diffusant concentration in the slab at point x and time ¢

concentrations in lamina j in equilibrium with baths of concentrations ¢®, ¢/, and c¢
respectively

diffusion coefficient in lamina j; a constant

ratio of the amount of diffusant in lamina j to that in the finite volume at equilib-
rium

index that identifies laminae, j = 1,2,..., N

partition coefficient relating the concentration of diffusant in lamina j to that in a bath,
at equilibrium; K; = Cj/c

partition coefficient relating the equilibrium concentration of the diffusant in lamina
Jj tothatinlaminaj — 1; K;—;; = C;/Cj—,

total thickness of the slab

number of laminae in the slab

defined by R, = @3,X3, in example

defined by Rj& » = Ry Ajr/0jk, in example

time measured from the initiation of the diffusion experiment

volume of the finite bath

volume of lamina N

point along the direction of flow; the x-axis point at the plane separating lamina j from
laminaj + 1

thickness of lamina j; X; = x; — x;_;

terms in the C(x,t) equation; i sin aj,x

terms in the C(x,t) equation; cos aj,x

roots of the determinant |A|

defined by ajn, = ann/8j N

defined by 6,1 ; = (Dj-1/D))'/2

defined by A = X;/X,

defined by 7 = D3t/X#%, in example
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