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Synopsis 

Equations describing transient diffusion through multilaminate slabs with constant diffusion 
and partition coefficients for each lamina separating well-stirred finite and semiinfinite baths are 
presented. Application is illustrated using a representative slab with three laminae. 

INTRODUCTION 

Equations have been reported describing transient diffusion through homo- 
geneous slabs1T2 and through binary laminate slabs3 separating well-stirred finite 
and semiinfinite baths. This paper extends that work to provide equations 
describing such systems with the baths separated by slabs containing N laminae, 
each with constant diffusion and partition coefficients. The equations are for- 
mulated in a manner suitable for computer evaluation using determinants and 
summations and are applicable in the range of modest to large time.4 The 
procedure is illustrated by application to a system with N = 3. 

DIFFUSION EQUATIONS 

Consider a laminate slab of unit cross section and N laminae in contact with 
a well-stirred semiinfinite bath at  x = xo and with a well-stirred finite bath of 
volume V at x = XN. The system is presented schematically and indexed in 
Figure 1. The diffusant concentration in the semiinfinite bath is constant, cc,  
and its initial value in the finite bath is co. The concentration in each lamina 
prior to initiation of the diffusion is uniform, Cj in lamina j, related to a bath 
concentration, c L ,  at  equilibrium by the partition coefficient K ,  = Cj/cz.  Equi- 
librium is maintained at each phase interface described by K1 = C i / c c  at  x = 
XQ, KJ-lJ = C,-l/C, at x = xJ-l  for j = 2, .  . ., N ,  and Kpj = C,/C, at  X = X N ,  

where c is in V. Each lamina is also characterized by a constant diffusion coef- 
ficient D, and a thickness X, = x, - x J - l ,  j = 1, ..., N .  The total thickness of the 
slab is L = Z.;”=lX,. 

The differential equations and boundary conditions for the determination 
of C,(x, t )  = C, are 
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HN is the ratio of the amount of diffusant in lamina N to that in volume V at  
equilibrium and is given by 

HN = K N v N / v  (9) 
where VN is the volume of lamina N .  

gives solutions 
Application of the Laplace transform method5 using the inversion theorem 

m 

C j ( x , t )  = Cje + 2 C e-DNa&,t ( [ ( C i  - C";Ak2j-' + ia N n x N  
n=l 

( C g  - c L ) A ~ N & - ~  ,, ]Yj,2j-l,n(X) [ (Ct  - C",Ak2' i a N n X N  

where C; is the concentration of diffusant in lamina j in equilibrium with a bath 
of concentration c c  and IAI is the determinant of the elements A l k  of order 2N 
generated by applying j in sequence 1, ..., N with 1 defined as indicated and k 
= 1, ..., N ,  as follows: 

j = 1, I = 2 j  - 1: 
j = 2, ..., N ,  

All = i sin ~ ~ 1 x 0 ,  A12 = cos alxo 
. .  I = 2 j  - 2 :  Al,l-i = - Z  sin a j - 1 X j - 1 ,  Al,l = -COS a j - l X j - 1  

Al,l+1 = iKj-lj sin ajxj-1, A~,l+2 = Kj-lj  cos a j X j - 1  

1 

and all other A l k  = 0, with 6 j - l j  = (Dj-1/Dj)1'2. The ALk are the cofactors of 
the Alk  and Y j , ~ j - l , n ( ~ )  = i sin ajnX and Y j , 2 j , n ( ~ )  = cos ajnx for j = 1, ..., N .  

The CYN are the nonzero positive roots of 

IAI = O ,  (12) 
indexed as a ~ ~ ,  where ajn = (YNn/6j,N. 

Fin i te  Serniinlinite 

'0 'I '1-1 '1 'N-l 'N 

Fig. 1. Schematic representation of laminate slabs separating finite and semiinfinite baths. 
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Fig. 2. Relative concentration profile, C(x,r ) lCi  vs. x / X 3 ,  for systems with H3 = 2.0, 6 2 3  = 1.0, 
and K13 = K23 = K3 = 1.0 I ,  613 = 0.2; 11,613 = 1.0; and 111, 613 = 5.0. 7: (-) 1.5; ( -  - - )  6.0. 

In many experiments the concentration or pressure of the diffusant in the finite 
volume c ( t )  is measured as a function of time. Using eq. (10) and setting C N ( X N , ~ )  
= K ~ c ( t ) ,  one obtains 

m 

c ( t )  = c c  + 2 e-D,ffhnt ( [ ( c c  - Ci)K1NA:2N-1+ iffNnXN 
n=l 

( C o  - Ci)An 2N,2N-1 ] Y N , Z N - l , n ( x N )  [ ( C c  - C ' ) K ~ N A ? ~ ~  -I- iffNnXN 

where KIN = K ~ I K N .  
Adoption of eq. (13) to describe feasible experimental conditions is readily 

obtained by fixing the values of c c ,  ci, and co appropriately. In addition, vari- 
ations on the boundary conditions leading to different diffusion equations can 

I I I I 

0 3 6 9 12 1 
7- 

Fig. 3. In F ( T )  vs. 7 for systems with H = 2.0,623 = 1.0 and K13 = K23 = K3 = 1.0 at  (a) 613 = 0.2, 
(b) 613 = 1.0, and (c) 613 = 5.0. 
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be introduced. For example, assume lamina 1 is a film formed in the semiinfinite 
bath in which the slab with j = 2, ..., N is placed to initiate the transport com- 
mencing at  x = X I .  The differential equations and boundary conditions are 
provided in eqs. (1)-(8), with eq. (6) replaced by 

(14) Cl(X,O) = cc,, 
C j ( X , O )  = c; 

xo d x < x1 
x j - 1  d x d x j ,  j = 2, ..., N 

The solutions are 

j = 1, ..., N (15) 

where [ A  I is again defined and evaluated by eq. (11). The concentration in V 
is given by 

c ( t )  = c C  + 2 C e - D N a h , t  ( [ ( c c  - cO)K1NAk2N-1 + i a N n X N  
m 

n=l 

( c o  - C ’ ) A ~ ~ , ~ ~ - ~ ] Y ~ ~ , Z N - ~ , ~ ( X N )  + [ ( c c  - co)K1NAfi2N + i a N n X N  

Fig. 4. Relative concentration profile, C ( x , ~ ) l C h  vs. n/X3, at  7 = 6.0 for systems with h13 = hZ3 
= 1.0,Kn = K23 = 0.2, and K3 = 5.0. H3: (-.-) 0.2; (-) 1.0; ( - - - )  2.0. 
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Fig. 5. In F ( T )  vs. 7 for systems with 613 = 1.0, K13 = Ka3 = 0.2, and K 3  = 5.0 a t  (a) H3 = 0.2, (b) 
H3 = 1.0, and (c) H3 = 2.0. 

APPLICATION 

Equations (10) and (13) were reduced to describe systems with N = 3, ci = co  
# 0, and c c  = 0, and recast in reduced dimensionless parameters: D34,t = R ~ T ,  
where ( ~ 3 n X 3  = R, and T = D3t/Xi;  R13,n = RnX13/613; R23,n = RnX23/623;  6q3  
= 0 1 / 0 3 ;  6& = 0 2 / 0 3 ;  X13 = X J X 3 ;  X23 = X,/X,; and K13 = CJC3 and K23 = 
C2/C3 at  equilibrium. 

The equations for each lamina and the concentration in V are 

X (H3 cos Rn - Rn sin R n ) ] / R n  (-) 4 4  (17) bR n 
m 

-- c2(x17) - -2612K12 C , - R ~ T  [ sin ( R23,n k, x 2  - ”’) (H3 sin R, + R, cos R,) 
C’, n=l 

- 62&23 cos ( R23’n(X2 x2 - I)) (H3 cos R, - R, sin R,) ] / R n  (s), (18) 

and 
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Procedures for evaluating these types of equations have been described pre- 
viously.6 Relative concentrations were calculated as a function of 7. Selected 
results obtained using three roots, R, with n = 1,2,3, for systems with A13 = A23 
= 1.0, are shown in Figures 2-5. Figures 2 and 3 illustrate the effect of changing 
DI/D3 = i& on the time dependence of the relative concentration profile in the 
laminate and the relative concentration in V. Figures 4 and 5 illustrate the effect 
of H3, the ratio of the equilibrium amounts of penetrant in lamina 3 and in V, 
on a relative concentration profile in the laminate and the time dependence of 
the relative concentration of the penetrant in V. 

NOMENCLATURE 
determinant of order 2N used to evaluate LYN,,, and the coefficients of the terms in the 

elements of the determinant I A 1 
cofactors of the elements A[ ,  in ( A  1 
diffusant concentration in the finite bath as a function of time. 
diffusant concentration in the semiinfinite bath; a constant 
initial diffusant concentration in the finite bath 
diffusant concentration in a bath in equilibrium with the diffusant in the laminae before 

diffusant concentration in the slab at point x and time t 
concentrations in laminaj in equilibrium with baths of concentrations co, c ; ,  and c C  

diffusion coefficient in lamina j ;  a constant 
ratio of the amount of diffusant in lamina j to that  in the finite volume a t  equilih- 

index that identifies laminae, j = 1,2, .  . ., N 
partition coefficient relating the concentration of diffusant in lamina; to that in a bath, 

partition coefficient relating the equilibrium concentration of the diffusant in lamina 

total thickness of the slab 
number of laminae in the slab 
defined by R, = ~ ~ 3 ~ x 3 ,  in example 
defined by Rjk,,, = RnAjk/6jk, in example 
time measured from the initiation of the diffusion experiment 
volume of the finite bath 
volume of lamina N 
point along the direction of flow; the x-axis point a t  the plane separating lamina; from 

thickness of lamina J ;  X j  = xj - xj-1 
terms in the C ( x , t )  equation; i sin ajnx 
terms in the C ( x , t )  equation; cos ajnx 
roots of the determinant [ A  I 
defined by aj, = OINn/6jI.N 
defined by 6 j - l j  = (Dj-I/Dj)l’z 
defined by Ajk = X j / &  
defined by r = D$/X,2, in example 

equation for C(x , t ) .  

the diffusion experiment is initiated 

respectively 

rium 

a t  equilibrium; K ,  = Cj /c  

j to  that in lamina j - 1; Kj-i j  = C,/C,-, 

lamina j + 1 
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